1	COMPARISON OF NUCLEAR FUEL COSTS									
2										
3	1.0 PURPOSE									
4	This evidence presents period-over-period comparisons for nuclear fuel bundle costs for									
5	2013-2021 in support of the approvals sought for nuclear fuel costs. Nuclear fuel costs									
6	consist of Total Fuel Bundle Cost, Used Fuel Storage and Disposal cost, and Fuel Oil. This									
7	exhibit discusses period-over-period changes for Total Fuel Bundle Cost. Used Fuel Storage									
8	and Disposal is discussed in Ex. C2-1-1. Comparisons for Fuel Oil are not discussed									
9	because the period-over-period changes are not material.									
10										
11	2.0 OVERVIEW									
12	Period-over-period variances are presented in Ex. F2-5-2 Table 1 and are explained below.									
13	See Ex. F2-5-1 for a discussion of key drivers associated with nuclear fuel bundle costs.									
14										
15	3.0 PERIOD-OVER-PERIOD CHANGES – TEST YEARS									
16										
17	2017 Plan versus 2016 Budget									
18	The decrease of \$36.0M in nuclear fuel bundle cost is due to lower energy production of									
19	-\$37.3M and higher fuel utilization efficiency of -\$1.2M, offset by higher unit prices for new									
20	fuel loaded at +\$2.4M.									
21										
22	2018 Plan versus 2017 Plan									
23	The decrease of \$0.2M in nuclear fuel bundle cost is due to lower unit prices for new fuel									
24	loaded at -\$1.9M, offset by higher energy production of +\$1.3M and lower fuel utilization									
25	efficiency of +\$0.4M.									
26										
27	2019 Plan versus 2018 Plan									
28	The decrease of \$0.5M in nuclear fuel bundle cost is due to lower unit prices for new fuel									
29	loaded at -\$2.7M and higher fuel utilization efficiency of -\$0.1M, offset by higher energy									
30	production of +\$2.3M.									
31										

Filed: 2016-05-27 EB-2016-0152 Exhibit F2 Tab 5 Schedule 2 Page 2 of 3

1 **2020 Plan versus 2019 Plan**

The increase of \$5.4M in nuclear fuel bundle cost is due to higher unit prices for new fuel loaded at +\$1.8M and the one time impact of +\$15.3M related to the requirement for a load of new fuel to be included in the reactor core of Unit 2 prior to start-up, offset by lower energy production of -\$6.8M and higher fuel utilization efficiency of -\$4.9M.

6

7 2021 Plan versus 2020 Plan

8 The decrease of \$15.8M in nuclear fuel bundle cost is due to lower energy production of 9 -\$9.2M and no repeat of the new fuel load in Unit 2 which occurred in 2020 (-\$15.3M), offset 10 by higher unit prices for new fuel loaded at +\$3.2M and lower fuel utilization efficiency of 11 +\$5.5M.

12

13 4.0 PERIOD-OVER-PERIOD CHANGES – BRIDGE YEAR

14

15 2016 Budget versus 2015 Actual

The increase of \$12.4M in nuclear fuel bundle cost is due to higher energy production of
+\$10M, higher unit prices for new fuel loaded at +\$1.8M and lower fuel utilization efficiency
of +\$0.6M.

19

20 5.0 PERIOD-OVER-PERIOD CHANGES - HISTORICAL YEARS

21

22 2015 Actual versus 2015 OEB Approved¹

The decrease of \$15.6M in nuclear fuel bundle cost is due to lower energy production of -\$8.7M and lower unit prices for new fuel loaded at -\$8.5M, offset by lower fuel utilization efficiency of +\$1.6M.

26

27 2015 Actual versus 2014 Actual

¹ Fuel Bundle Cost for OEB Approved adjusted to reflect nuclear production forecast adjustments per EB-2013-0321 Ex. N1, Ex. N2 and Decision with Reasons, pp. 39 and 49.

1 The decrease of \$12.7M in nuclear fuel bundle cost is due to lower energy production of 2 -\$14.1M offset by higher unit prices for new fuel loaded at +\$0.6M and lower fuel utilization

3 efficiency of +\$0.8M.

4

5 2014 Actual versus 2014 OEB Approved¹

6 The decrease of \$9.6M in nuclear fuel bundle cost is due to lower energy production of 7 -\$4.5M, lower unit prices for new fuel loaded at -\$5.4M, offset by lower fuel utilization 8 efficiency of +\$0.3M.

9

10 2014 Actual versus 2013 Actual

The increase of \$5.6M in nuclear fuel bundle cost is due to higher energy production of
+\$14.1M offset by lower unit prices for new fuel loaded at -\$7.3M and higher fuel utilization
efficiency of -\$1.2M.

14

15 2013 Actual versus 2013 Budget

The decrease of \$22.6M in nuclear fuel bundle cost is due to lower energy production of
-\$14.9M, lower unit prices for new fuel loaded at -\$7.2M and higher fuel utilization efficiency
of -\$0.5M.

Filed: 2016-05-27 EB-2016-0152 Exhibit F2 Tab 5 Schedule 2 Table 1

Table 1 Comparison of Nuclear Fuel Costs (\$M)

Line		2013	(c)-(a)	2013	(g)-(c)	2014	(g)-(e)	2014	(k)-(g)	2015	(k)-(i)	2015
No.	Business Unit	Budget	Change	Actual	Change	OEB Approved	Change	Actual	Change	OEB Approved	Change	Actual
		(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
	Uranium:											
1	Darlington NGS	119.7	(12.4)	107.3	7.3	118.1	(3.5)	114.6	(16.1)	109.0	(10.5)	98.5
2	Pickering NGS	96.2	(10.2)	86.0	(1.8)	90.3	(6.1)	84.2	3.5	92.8	(5.1)	87.7
3	Total Fuel Bundle Cost	215.9	(22.6)	193.3	5.6	208.4	(9.6)	198.8	(12.7)	201.8	(15.6)	186.2
4	Used Fuel Storage & Disposal ²	52.7	(3.7)	49.0	4.6	56.1	(2.5)	53.6	(0.5)	56.7	(3.6)	53.1
5	Fuel Oil	4.0	(1.6)	2.4	(0.0)	4.1	(1.7)	2.3	2.8	4.2	0.9	5.1
6	Total Nuclear Fuel Costs	272.6	(27.9)	244.7	10.1	268.6	(13.8)	254.8	(10.4)	262.6	(18.3)	244.3

Line		2015	(c)-(a)	2016	(e)-(c)	2017	(g)-(e)	2018	(i)-(g)	2019	(k)-(i)	2020
No.	Business Unit	Actual	Change	Budget	Change	Plan	Change	Plan	Change	Plan	Change	Plan
		(a)	(b)	(C)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)
	Uranium:											
7	Darlington NGS	98.5	14.1	112.5	(29.9)	82.6	(0.1)	82.5	(0.1)	82.4	3.2	85.5
8	Pickering NGS	87.7	(1.7)	86.0	(6.1)	79.9	(0.1)	79.9	(0.3)	79.5	2.2	81.8
9	Total Fuel Bundle Cost	186.2	12.4	198.6	(36.0)	162.6	(0.2)	162.3	(0.5)	161.9	5.4	167.3
10	Used Fuel Storage & Disposal ²	53.1	8.9	62.0	(8.9)	53.0	2.2	55.2	11.5	66.7	(10.4)	56.3
11	Fuel Oil	5.1	(0.9)	4.2	0.1	4.3	0.1	4.4	0.1	4.5	0.1	4.6
12	Total Nuclear Fuel Costs	244.3	20.4	264.8	(44.8)	219.9	2.1	222.0	11.1	233.1	(4.9)	228.2

Line		2020	(c)-(a)	2021
No.	Business Unit	Plan	Change	Plan
		(a)	(b)	(C)
	Uranium:			
13	Darlington NGS	85.5	(13.7)	71.9
14	Pickering NGS	81.8	(2.2)	79.6
15	Total Fuel Bundle Cost	167.3	(15.8)	151.4
16	Used Fuel Storage & Disposal ²	56.3	0.2	56.5
17	Fuel Oil	4.6	0.1	4.7
18	Total Nuclear Fuel Costs	228.2	(15.5)	212.7

Notes:

- 1 Fuel Bundle Cost on lines 1, 2 and 3 adjusted to reflect nuclear production forecast adjustments per EB-2013-0321 Ex. N1, Ex. N2 and Decision with Reasons, pp. 39 and 49.
- 2 2013 Actual, 2014 Actual, 2015 Actual, 2016 Budget, 2017 Plan, 2018 Plan, 2019 Plan, 2020 Plan, and 2021 Plan from Ex. C2-1-1 Table 2, line 2. Used Fuel Storage & Disposal is discussed in Ex. C2-1-1.